Airbyte is an open-source data integration platform. It allows the creation of ELT data pipelines and is shipped with more than 140 out-of-the-box connectors. This step-by-step tutorial shows how to connect Airbyte to ClickHouse as a destination and load a sample dataset. In this article, you will learn what Airbyte is and how to connect Airbyte to ClickHouse.
Airbyte solves this problem by building and maintaining connectors while fostering a community of users who benefit from one another’s custom connectors. It’s common practice for companies to build custom connectors to support their applications. Airbyte’s open-source model creates a community wherein companies can support one another by building and maintaining their unique connectors.
Connectors on Airbyte run in Docker containers, which allows for independent operating. You can easily monitor each of your connectors, refresh them as needed, and schedule updates. Airbyte first certifies new connectors to ensure they’re ready for production; currently, there are over 46 connectors available. More than 250 companies are already benefitting from this open-source data pipeline platform.
1. Download and run Airbyte
- Airbyte runs on Docker and uses
docker-compose
. Make sure to download and install the latest versions of Docker. - Deploy Airbyte by cloning the official GitHub repository and running
docker-compose up
in your favorite terminal:git clone https://github.com/airbytehq/airbyte.git cd airbyte docker-compose up
- Once you see the Airbyte banner in your terminal, you can connect to localhost:8000
2. Add ClickHouse as a destination
This section will display how to add a ClickHouse instance as a destination.
- Start your ClickHouse server (Airbyte is compatible with ClickHouse version
21.8.10.19
or above): - Within Airbyte, select the “Destinations” page and add a new destination:
3. Pick a name for your destination and select ClickHouse from the “Destination type” drop-down list:
4. Fill out the “Set up the destination” form by providing your ClickHouse hostname and ports, database name, username and password, and select if it’s a TLS connection (equivalent to the --secure
flag in the clickhouse-client
).
5. Congratulations! you have now added ClickHouse as a destination in Airbyte.
3. Add a dataset as a source
The example dataset we will use is the New York City Taxi Data (on Github). For this tutorial, we will use a subset of this dataset which corresponds to the month of July 2021.
- Within Airbyte, select the “Sources” page and add a new source of type file.2. Fill out the “Set up the source” form by naming the source and providing the URL of the NYC Taxi July 2021 file (see below). Make sure to pick
csv
as file format,HTTPS Public Web
as Storage Provider andnyc_taxi_072021
as Dataset Name.
https://s3.amazonaws.com/nyc-tlc/trip+data/yellow_tripdata_2021-07.csv
3. Congratulations! You have now added a source file in Airbyte.
4. Create a connection and load the dataset into ClickHouse
- Within Airbyte, select the “Connections” page and add a new connection
2. Select “Use existing source” and select the New York City Taxi Data, the select “Use existing destination” and select you ClickHouse instance.
3. Fill out the “Set up the connection” form by choosing a Replication Frequency (we will use manual
for this tutorial) and select nyc_taxi_072021
as the stream you want to sync. Make sure you pick Normalized Tabular Data
as a Normalization.
4. Now that the connection is created, click on “Sync now” to trigger the data loading (since we picked Manual
as a Replication Frequency)
5. Your data will start loading, you can expand the view to see Airbyte logs and progress. Once the operation finishes, you’ll see a Completed successfully
message in the logs:
6. Connect to your ClickHouse instance using your preferred SQL Client and check the resulting table:
SELECT * FROM nyc_taxi_072021 LIMIT 10
Output ;
Query id: 1dbe609f-9136-49cf-a642-51a2305e1027 ┌─extra─┬─mta_tax─┬─VendorID─┬─RatecodeID─┬─tip_amount─┬─fare_amount─┬─DOLocationID─┬─PULocationID─┬─payment_type─┬─tolls_amount─┬─total_amount─┬─trip_distance─┬─passenger_count─┬─store_and_fwd_flag─┬─congestion_surcharge─┬─tpep_pickup_datetime─┬─improvement_surcharge─┬─tpep_dropoff_datetime─┬─_airbyte_ab_id───────────────────────┬─────_airbyte_emitted_at─┬─_airbyte_normalized_at─┬─_airbyte_nyc_taxi_072021_hashid──┐ │ 3.5 │ 0.5 │ 1 │ 1 │ 0 │ 11.5 │ 237 │ 162 │ 2 │ 0 │ 15.8 │ 2.3 │ 1 │ ᴺᵁᴸᴸ │ 2.5 │ 2021-07-07 17:49:32 │ 0.3 │ 2021-07-07 18:04:30 │ 00000005-a90c-41b7-8883-1ab75c0ad9da │ 2022-03-16 13:02:50.000 │ 2022-03-16 13:09:48 │ DE8F3E68A49EC6CB00919501E6726335 │ │ 0 │ 0.5 │ 2 │ 1 │ 10 │ 23 │ 256 │ 233 │ 1 │ 0 │ 36.3 │ 5.4 │ 1 │ ᴺᵁᴸᴸ │ 2.5 │ 2021-07-15 07:23:36 │ 0.3 │ 2021-07-15 07:50:28 │ 00001877-58ba-4614-90d4-4e5eba3cd593 │ 2022-03-16 13:04:46.000 │ 2022-03-16 13:09:48 │ 7915C6A4D33BCE7CF58D66CF1F2E1A61 │ │ 0.5 │ 0.5 │ 2 │ 1 │ 5 │ 30.5 │ 138 │ 137 │ 1 │ 6.55 │ 45.85 │ 10.93 │ 1 │ ᴺᵁᴸᴸ │ 2.5 │ 2021-07-18 05:00:28 │ 0.3 │ 2021-07-18 05:18:54 │ 00001885-d93e-49d7-a92c-c09fd49e8b39 │ 2022-03-16 13:05:37.000 │ 2022-03-16 13:09:48 │ A7346163EA6D6F0CBBA562CE1C5F9401 │ │ 2.5 │ 0.5 │ 1 │ 1 │ 0 │ 5 │ 100 │ 186 │ 2 │ 0 │ 8.3 │ 1 │ 1 │ ᴺᵁᴸᴸ │ 2.5 │ 2021-07-07 09:47:59 │ 0.3 │ 2021-07-07 09:52:13 │ 000029d1-2e26-4d83-9efe-51cb182282d9 │ 2022-03-16 13:02:42.000 │ 2022-03-16 13:09:48 │ C6389A8B2B6E24A74612F7FB53DAA9A0 │ │ 1 │ 0.5 │ 2 │ 1 │ 4 │ 19.5 │ 13 │ 161 │ 1 │ 0 │ 27.8 │ 5.06 │ 3 │ ᴺᵁᴸᴸ │ 2.5 │ 2021-07-12 17:54:49 │ 0.3 │ 2021-07-12 18:17:43 │ 00003433-6886-4267-b8a9-da1b366537c4 │ 2022-03-16 13:04:06.000 │ 2022-03-16 13:09:48 │ 8E7C4E55F366901E4B6DFB02C3CAE838 │ │ 0 │ 0.5 │ 2 │ 1 │ 0 │ 7 │ 233 │ 140 │ 2 │ 0 │ 10.3 │ 1.3 │ 1 │ ᴺᵁᴸᴸ │ 2.5 │ 2021-07-15 13:06:34 │ 0.3 │ 2021-07-15 13:13:24 │ 000049ae-b0c8-4e07-a3e6-ea19916fb6c3 │ 2022-03-16 13:04:51.000 │ 2022-03-16 13:09:48 │ 704F99F611D1A71713A4870406E28B54 │ │ 3.5 │ 0.5 │ 1 │ 1 │ 9.8 │ 35 │ 138 │ 230 │ 1 │ 0 │ 49.1 │ 9.9 │ 0 │ ᴺᵁᴸᴸ │ 2.5 │ 2021-07-09 16:09:24 │ 0.3 │ 2021-07-09 16:45:15 │ 00004cc2-868e-4465-a24b-7efcb5da8cd4 │ 2022-03-16 13:03:20.000 │ 2022-03-16 13:09:48 │ 8AB6444AD089BA300B303447C4B70500 │ │ 2.5 │ 0.5 │ 1 │ 1 │ 3 │ 10 │ 232 │ 224 │ 1 │ 0 │ 16.3 │ 2.6 │ 0 │ ᴺᵁᴸᴸ │ 2.5 │ 2021-07-06 15:21:57 │ 0.3 │ 2021-07-06 15:30:09 │ 00005277-bc5f-4d1e-b116-d3777fef87f7 │ 2022-03-16 13:02:33.000 │ 2022-03-16 13:09:48 │ AC5A4F12E7EC61116F146DE90375A74B │ │ 0.5 │ 0.5 │ 2 │ 1 │ 2.34 │ 6.5 │ 42 │ 41 │ 1 │ 0 │ 10.14 │ 1.02 │ 1 │ ᴺᵁᴸᴸ │ 0 │ 2021-07-16 20:27:38 │ 0.3 │ 2021-07-16 20:33:46 │ 0000571b-6698-43f4-878d-d0d3f91e40d1 │ 2022-03-16 13:05:16.000 │ 2022-03-16 13:09:48 │ A447703038C0257801F7DA3CBBCA47CB │ │ 0 │ 0.5 │ 2 │ 1 │ 0 │ 24 │ 232 │ 48 │ 2 │ 0 │ 27.3 │ 6.74 │ 1 │ ᴺᵁᴸᴸ │ 2.5 │ 2021-07-10 15:00:11 │ 0.3 │ 2021-07-10 15:27:38 │ 000060b7-76b5-4d73-ae7f-0c475f69078b │ 2022-03-16 13:03:35.000 │ 2022-03-16 13:09:48 │ 6A593070389760D2339DDBD76E913447 │ └───────┴─────────┴──────────┴────────────┴────────────┴─────────────┴──────────────┴──────────────┴──────────────┴──────────────┴──────────────┴───────────────┴─────────────────┴────────────────────┴──────────────────────┴──────────────────────┴───────────────────────┴───────────────────────┴──────────────────────────────────────┴─────────────────────────┴────────────────────────┴──────────────────────────────────┘
SELECT count(*) FROM nyc_taxi_072021
Query id: a9172d39-50f7-421e-8330-296de0baa67e ┌─count()─┐ │ 2821515 │ └─────────┘
7. Notice that Airbyte automatically inferred the data types and added 4 columns to the destination table. These columns are used by Airbyte to manage the replication logic and log the operations. More details are available in the Airbyte official documentation.
`_airbyte_ab_id` String, `_airbyte_emitted_at` DateTime64(3, 'GMT'), `_airbyte_normalized_at` DateTime, `_airbyte_nyc_taxi_072021_hashid` String
Now that the dataset is loaded on your ClickHouse instance, you can create an new table and use more suitable ClickHouse data types (more details).
- Congratulations – you have successfully loaded the NYC taxi data into ClickHouse using Airbyte!
Referance:
https://clickhouse.com/docs/en/integrations/airbyte-and-clickhouse/