
Mastering SQL Engineering 
and Indexing in ClickHouse
Welcome to this comprehensive guide on optimizing SQL engineering 
and indexing in ClickHouse. As data volumes grow exponentially, the 
need for high-performance analytical databases becomes critical. 
ClickHouse stands out as a purpose-built solution for analytical 
workloads, offering remarkable query speeds at scale.

Throughout this presentation, we'll explore the fundamental principles 
and advanced techniques to maximize your ClickHouse 
implementation's performance. From understanding its unique 
architecture to implementing optimal primary key designs and SQL 
query patterns, you'll gain the knowledge needed to achieve peak 
performance for your analytical workloads.

by Shiv Iyer



Agenda

1
ClickHouse Architecture Fundamentals
Column-oriented storage and sparse indexing model

Primary Key Design Principles
Optimizing your sort order and indexing strategy

SQL Query Optimization
Best practices for writing efficient queries

4
Performance Monitoring and Tuning
Tools and techniques for ongoing optimization

Our journey will begin with a deep dive into ClickHouse's architecture to 
establish a solid foundation of knowledge. We'll then explore how to 
design optimal primary keys, write efficient SQL queries, and implement 
ongoing monitoring and tuning practices to ensure sustained 
performance.



What Makes ClickHouse Different?
True Column-Oriented Storage
Designed from the ground up for analytical workloads 
with columnar data organization that enables 
exceptional query performance

Sparse Primary Indexing
Unique approach to indexing that reduces memory 
footprint while maintaining fast data access

Advanced Data Compression
Highly efficient compression algorithms specific to 
each data type, reducing storage requirements by up 
to 10x

Vectorized Query Execution
Processes data in chunks rather than row-by-row, 
resulting in dramatically faster analytics

These fundamental differences give ClickHouse significant performance advantages over traditional row-oriented databases 
when handling analytical workloads. Understanding these unique characteristics is essential for effective optimization.



Column-Oriented Architecture
How it Works

In ClickHouse, data is organized by columns rather than 
rows. Each column is stored in separate files, allowing the 
system to read only the specific columns needed for a 
query.

This approach stands in contrast to row-oriented databases 
where all column values for a single row are stored 
together, requiring the system to read unnecessary data 
when only specific columns are needed.

Key Benefits

Dramatically reduced I/O for analytical queries

Better compression ratios for similar data types

Efficient vectorized processing on column chunks

Improved cache locality for better CPU utilization

This column-oriented organization is the foundation of ClickHouse's performance advantages for analytical workloads. It 
enables the system to minimize the amount of data read from disk while maximizing processing efficiency.



Sparse Primary Indexing: A Different Approach

1
Binary Search
Fast lookup on sorted data

In-Memory Index
Fully loaded for rapid access

3
Granule-Level Indexing
One index entry per data granule

ClickHouse uses a fundamentally different indexing approach compared to traditional databases. Instead of maintaining a B-
tree index that points to individual rows, ClickHouse creates a sparse index with one entry per granule (typically 8,192 rows). 
This dramatically reduces the memory footprint of the index while still providing fast data access.

The index is fully loaded into RAM at query time, enabling rapid binary search operations. Data is physically sorted on disk 
according to the primary key, allowing the system to quickly identify which granules need to be read for a given query 
condition.



How Sparse Indexing Works
Data Organized by Primary Key
All data is physically sorted on disk according to the columns in the primary key, creating ordered data blocks

Granule Creation
Data is divided into granules (default 8,192 rows), with one index entry created for the first row in each granule

Index Loading
When a query is executed, the entire sparse index is loaded into memory for fast lookups

Granule Selection
The system uses binary search on the index to determine which granules may contain relevant data

Mark Files
Special mark files help locate the exact position of granules on disk for efficient reading

This sparse indexing approach provides an excellent balance between memory efficiency and query performance. It allows 
ClickHouse to handle massive datasets while maintaining fast query response times.



Primary Key vs. Order By: Important Distinction

PRIMARY KEY Definition
In ClickHouse, the PRIMARY KEY 
determines what columns are used 
to build the sparse index. It defines 
the lookup mechanism but doesn't 
guarantee uniqueness.

Creates sparse index entries

Used for data skipping

Does not enforce uniqueness

ORDER BY Definition
The ORDER BY clause determines 
how data is physically sorted on 
disk. This physical ordering is 
critical for performance.

Determines physical data 
layout

Affects compression efficiency

Cannot be changed after table 
creation

Default Behavior
If PRIMARY KEY is not specified, it 
defaults to the same value as 
ORDER BY. In most cases, these 
should be the same, but there are 
scenarios where they might differ.

Separate for specialized use 
cases

Same for most 
implementations

Understanding this distinction is crucial for optimal table design in ClickHouse. While they often share the same columns, 
recognizing their different roles helps in designing more effective schemas.



Primary Key Design: Column Ordering Principles

Match Query Patterns
Design primary keys to support your most common 
query patterns. Columns used frequently in WHERE 

clauses should be considered for inclusion in the 
primary key.

Order by Cardinality (Ascending)
Place lower-cardinality columns (fewer unique 
values) first, followed by higher-cardinality 
columns. This improves both data compression and 
query performance.Prioritize First Column

The first column enables efficient binary search 
operations, while secondary columns use less 

efficient generic exclusion methods. Choose this 
column carefully.

Balance Selectivity
Aim for a primary key that provides good 
selectivity - not too broad or too narrow - to 
optimize the number of granules that need to be 
scanned.

Following these principles will help you create primary keys that significantly enhance query performance by reducing the 
amount of data that needs to be scanned for each query.



Primary Key Column Ordering Example

CREATE TABLE events (
  URL String,
  UserID UInt64,
  IsRobot UInt8,
  EventTime DateTime
) ENGINE = MergeTree()
ORDER BY (URL, UserID, IsRobot);
    

Sub-Optimal Design

This design places a high-cardinality column (URL) first, 
resulting in less efficient compression and potentially more 
granules to scan.

CREATE TABLE events (
  URL String,
  UserID UInt64,
  IsRobot UInt8,
  EventTime DateTime
) ENGINE = MergeTree()
ORDER BY (IsRobot, UserID, URL);
    

Optimized Design

This improved design places columns in order of increasing 
cardinality: IsRobot (lowest) first, followed by UserID, then 
URL (highest). This improves both compression and query 
performance.

The optimized design allows ClickHouse to skip more granules when filtering on IsRobot, resulting in better performance for 
queries that filter on this column. Additionally, similar values are grouped together, improving data compression.



Handling Multiple Query 
Patterns

Secondary Tables
Create additional tables with different primary keys to 
support diverse query patterns

Manual synchronization required

Highest flexibility for different schemas

Materialized Views
Automatically maintain synchronized copies with 
different sort orders

Automatic synchronization

Separate storage with different indexes

Projections
Let ClickHouse automatically choose the best index for 
each query

Most transparent option

Automatic selection by query optimizer

When different query patterns require different primary key 
organizations, these approaches provide ways to optimize for multiple 
access patterns. Each has trade-offs in terms of maintenance overhead, 
storage requirements, and query transparency.



Using ClickHouse Projections
What Are Projections?

Projections allow you to maintain alternative data 
organizations optimized for different query patterns. 
They're like materialized views but with automatic selection 
by the query optimizer.

Each projection can have its own:

Column subset

Primary key order

Aggregation or transformation

CREATE TABLE web_events (
  EventDate Date,
  UserID UInt64,
  URL String,
  RegionID UInt32
) ENGINE = MergeTree()
ORDER BY (EventDate, UserID)
SETTINGS index_granularity = 8192;

ALTER TABLE web_events
ADD PROJECTION region_projection (
  SELECT * ORDER BY (RegionID, EventDate)
);

-- Materialize the projection
ALTER TABLE web_events
MATERIALIZE PROJECTION region_projection;
    

Implementation Example

Projections provide a powerful way to optimize for multiple query patterns without manual table maintenance. The query 
optimizer automatically selects the most appropriate projection based on the query conditions.



SQL Query Optimization: 
General Principles

Filter Early and Effectively
Apply WHERE conditions that leverage the primary key to reduce 
data scanned as early as possible in your query

Select Only Required Columns
Avoid SELECT * by explicitly listing only the columns needed by 
your application

Optimize JOINs
Keep JOIN operations efficient by using matching types and 
filtering data before joining

Use Bulk Operations
Insert data in large batches rather than small, frequent 
operations for better performance

These fundamental principles form the foundation of efficient query 
design in ClickHouse. By focusing on these aspects, you can significantly 
improve the performance of your analytical workloads and reduce 
resource consumption.



Leveraging the Primary Key in Queries

-- Efficient query using primary key
SELECT COUNT(*)
FROM events
WHERE IsRobot = 0
  AND UserID = 12345;
    

Optimal Query Pattern

Queries that filter on the first column of your primary key 
will perform best, as they can leverage binary search.

-- Inefficient query missing primary key
SELECT COUNT(*)
FROM events
WHERE URL LIKE '%product%';
    

Sub-Optimal Query Pattern

Queries that don't filter on indexed columns will result in 
full table scans, which can be extremely slow on large 
tables.

The performance difference between these query patterns can be dramatic - often orders of magnitude. When designing your 
queries, always consider how they interact with your primary key to ensure optimal performance. When possible, include 
conditions on at least the first column of your primary key to enable efficient data skipping.



Query Filtering Best Practices

WHERE department = 
'Engineering'

Use Equality Conditions on 
First Primary Key Column
Filtering with equality conditions 
(=, IN) on the first primary key 
column enables the most efficient 
binary search on the sparse index.

WHERE department = 
'Engineering' 
  AND hire_date BETWEEN 
'2020-01-01' AND '2020-12-
31'

Range Conditions Work Best 
on Last Primary Key Column
Range conditions (>, <, BETWEEN) 
are most efficient when used on 
the last column of your primary key 
after equality conditions on 
preceding columns.

-- Inefficient: WHERE 
LOWER(status) = 'active'
-- Better: WHERE status = 
'ACTIVE'

Avoid Functions on Indexed 
Columns
Applying functions to indexed 
columns prevents the optimizer 
from using the index effectively. 
Move functions to the right side of 
conditions when possible.

Understanding how different types of filter conditions interact with ClickHouse's sparse indexing model is crucial for writing 
efficient queries. Properly structured filter conditions can dramatically reduce the amount of data that needs to be scanned.



Optimizing Complex Filtering

SELECT 
  EventDate, 
  COUNT(*)
FROM web_events
WHERE 
  URL LIKE '%checkout%'
  AND EventDate BETWEEN 
    '2023-01-01' AND '2023-01-31'
GROUP BY EventDate;
    

Sub-Optimal Pattern

This query has a condition on EventDate (indexed) but also 
includes a non-indexed LIKE filter on URL which may 
prevent effective use of the index.

SELECT 
  EventDate, 
  COUNT(*)
FROM web_events
WHERE 
  EventDate BETWEEN 
    '2023-01-01' AND '2023-01-31'
  AND URL LIKE '%checkout%'
GROUP BY EventDate;
    

Optimized Pattern

Placing the indexed column condition first clarifies intent, 
though ClickHouse's optimizer should reorder conditions 
regardless. The key improvement would be creating a 
secondary index on URL if this pattern is common.

For consistently better performance with text searches, consider implementing a specialized secondary index such as a 
bloom filter or n-gram index on the URL column. This would significantly improve filtering performance for the LIKE 
condition.



JOIN Optimization Strategies

JOIN operations can be resource-intensive in any database system, and ClickHouse is no exception. By following these 
optimization strategies, you can significantly improve the performance of queries that require joining multiple tables.

Remember that ClickHouse is primarily designed for analytical workloads and often performs best with denormalized data 
models that minimize the need for complex joins.

Filter Before Joining
Apply WHERE clauses to each table 
before the JOIN to reduce the data 

volume in the join operation

Match Data Types
Ensure join columns use identical 
data types to avoid type conversion 
overhead

Consider Join Engine
Use the appropriate join method 
based on table sizes and memory 
constraints

Evaluate Denormalization
Sometimes replacing JOINs with 

denormalized tables improves 
performance dramatically



JOIN Optimization Example

SELECT 
  u.username,
  COUNT(e.event_id) as event_count
FROM events e
JOIN users u ON e.user_id = u.id
WHERE 
  e.event_date >= '2023-01-01'
GROUP BY u.username;
    

Unoptimized JOIN

This query joins the entire events and users tables before 
filtering, potentially processing unnecessary data.

SELECT 
  u.username,
  COUNT(e.event_id) as event_count
FROM 
  (
    SELECT user_id, event_id
    FROM events
    WHERE event_date >= '2023-01-01'
  ) e
JOIN users u ON e.user_id = u.id
GROUP BY u.username;
    

Optimized JOIN

This query filters the events table first, reducing the 
amount of data involved in the JOIN operation.

The optimized query can perform significantly better, especially when the filter on event_date substantially reduces the 
number of rows from the events table. Always try to minimize the amount of data involved in JOIN operations by applying 
filters before joining.



Denormalization for 
Performance

When to Consider 
Denormalization
ClickHouse often performs 
best with denormalized data 
models, particularly for:

High-frequency analytical 
queries

Data with relatively stable 
dimensions

Scenarios where JOIN 
performance is a 
bottleneck

Implementation 
Approaches
Several methods to 
implement denormalization:

Pre-join data during ETL 
processes

Use materialized views to 
maintain denormalized 
copies

Leverage dictionary tables 
for efficient lookups

Trade-offs to Consider
Denormalization has both benefits and costs:

Increased storage requirements

More complex data update processes

Potential data consistency challenges

Unlike traditional OLTP databases where normalization is prioritized, 
ClickHouse's analytical focus often makes denormalization a better 
choice. The performance gains from avoiding complex JOINs can 
outweigh the added storage requirements and management complexity.



Dictionaries: A Powerful Alternative to JOINs
What Are ClickHouse Dictionaries?

Dictionaries are specialized data structures for storing 
relatively small, static reference data in memory for ultra-
fast lookups. They provide an efficient alternative to JOINs 
for dimension tables.

Key characteristics:

Stored entirely in RAM for fast access

Support automatic updates from various sources

Optimized for key-value or key-object lookups

CREATE DICTIONARY product_dict (
  product_id UInt32,
  name String,
  category String
)
PRIMARY KEY product_id
SOURCE(CLICKHOUSE(
  HOST 'localhost'
  PORT 9000
  TABLE 'products'
  USER 'default'
))
LIFETIME(MIN 300 MAX 360)
LAYOUT(HASHED());

-- Usage in query
SELECT 
  e.event_id,
  dictGet('product_dict', 'name', e.product_id) 
    AS product_name
FROM events e
WHERE e.event_date = today();
    

Implementation Example

Dictionaries can provide orders of magnitude better performance than JOINs for dimension lookups, especially for frequently 
used reference data like product catalogs, user attributes, or geographic information.



Secondary Indexes for Non-Primary Key Columns

Data Skipping Indexes
ClickHouse offers 
specialized secondary 
indexes designed to skip 
data blocks that don't match 
query conditions, even for 
columns not in the primary 
key

Index Types
Multiple index types 
available: minmax (ranges), 
set (distinct values), bloom 
filter (probabilistic 
membership), ngrambf_v1 
(text search), and tokenbf_v1 
(token search)

Granularity 
Configuration
Indexes can be configured 
with different granularities, 
allowing for trade-offs 
between index size and 
precision

Implementation 
Approach
Add indexes to existing 
tables with ALTER TABLE or 
define them during table 
creation for best 
performance on non-
primary key columns

Secondary indexes in ClickHouse work differently from traditional database indexes. Rather than pointing to individual rows, 
they store aggregate information about data granules to enable efficient data skipping. This approach maintains ClickHouse's 
performance focus while providing additional filtering capabilities.



Implementing Secondary Indexes

ALTER TABLE web_events
ADD INDEX url_index url TYPE bloom_filter(0.01)
GRANULARITY 1024;
    

Bloom Filter Index Example

Ideal for high-cardinality columns with equality checks:

This creates a bloom filter index on the URL column, 
configured with a 1% false positive rate and a granularity of 
1024 granules. It's effective for queries using equality 
conditions on URL.

ALTER TABLE web_events
ADD INDEX timestamp_idx 
  event_timestamp TYPE minmax
GRANULARITY 4;
    

MinMax Index Example

Ideal for range queries on non-primary key columns:

This creates a minmax index on the event_timestamp 
column, storing the minimum and maximum values for 
every 4 granules. It helps optimize range queries like 
BETWEEN or >, < operations.

After adding indexes to an existing table, you need to populate them with: ALTER TABLE web_events MATERIALIZE INDEX 
url_index. For new data, indexes are built automatically during insertion. Use the proper index type based on your query 
patterns for optimal performance.



N-gram Indexes for Text Search

What Are N-gram Indexes?
N-gram indexes break text into 
small overlapping segments 
(typically 3 characters) and create 
bloom filters to efficiently check 
for their presence. This enables 
faster LIKE and substring searches 
on text columns.

Optimized for pattern matching 
in text

Works with wildcards and 
partial matches

More efficient than full column 
scans

ALTER TABLE web_events
ADD INDEX url_ngram url 
TYPE ngrambf_v1(3, 512, 3, 0)
GRANULARITY 4;

ALTER TABLE web_events 
MATERIALIZE INDEX 
url_ngram;
    

Implementation Example

This creates an n-gram index with 
3-character grams, 512 hash 
functions, 3 parts per granule, and 
no additional processing.

When To Use
Consider using n-gram indexes 
when:

Frequently searching with LIKE 
'%pattern%'

Working with URL paths or text 
content

Needing partial text matching

N-gram indexes can dramatically improve the performance of text search operations, which are otherwise particularly 
expensive in columnar databases. They're especially valuable for log analysis and URL pattern matching scenarios.



Partitioning Strategy

Define Partition Key
Choose a column that 
distributes data evenly 

and matches query 
patterns, often time-

based for analytical data

Balance Granularity
Too many partitions 

increase management 
overhead, too few 

reduce the benefit; aim 
for partition sizes of 10-

100GB

Leverage in Queries
Include partition key in 
query filters to enable 

partition pruning, 
dramatically reducing 

scan volume

Implement Lifecycle
Use TTL expressions to 

automate data retention 
policies at the partition 

level

Partitioning is a crucial performance optimization technique in ClickHouse. It allows the system to work with smaller, more 
manageable chunks of data and to completely skip irrelevant partitions during query execution. For time-series data, 
partitioning by date or month typically provides an excellent balance of manageability and query performance.



Partitioning Implementation

CREATE TABLE web_events (
  EventDate Date,
  EventTime DateTime,
  UserID UInt64,
  URL String,
  RegionID UInt32
) ENGINE = MergeTree()
PARTITION BY toYYYYMM(EventDate)
ORDER BY (EventDate, UserID)
SETTINGS index_granularity = 8192;
    

Table Definition with Partitioning

This table is partitioned by year and month using the 
toYYYYMM function on EventDate. Each month's data will 
be stored in a separate partition on disk.

-- This query will only scan January 2023 data
SELECT 
  COUNT(*) AS hits,
  uniq(UserID) AS users
FROM web_events
WHERE EventDate BETWEEN 
  '2023-01-01' AND '2023-01-31'
  AND URL LIKE '%checkout%';
    

Partition-Aware Query

The optimizer will detect that this query only needs to read 
the January 2023 partition, completely skipping all other 
months' data.

Partitioning provides one of the most significant performance boosts for analytical workloads with time-based data. 
Combined with a proper primary key design, it enables ClickHouse to minimize the amount of data read from disk, resulting in 
dramatic query speed improvements.



Data Lifecycle Management with TTL

Column-Level TTL
Set expiration for individual column values

Row-Level TTL
Delete entire rows after specified time period

Move TTL
Migrate aging data to different storage tiers

Partition-Level Management
Drop or archive entire partitions based on age

ClickHouse provides sophisticated options for automating data lifecycle management. Using TTL (Time To Live) expressions, 
you can implement automatic data aging policies that maintain optimal performance by managing data volume while 
preserving accessibility according to business requirements.

These capabilities are especially valuable for time-series data where historical information gradually becomes less valuable 
and can be either deleted or moved to less expensive storage.



TTL Implementation Examples

CREATE TABLE web_events (
  EventDate Date,
  EventTime DateTime,
  UserID UInt64,
  URL String,
  UserAgent String,
  FullSessionData String
) ENGINE = MergeTree()
PARTITION BY toYYYYMM(EventDate)
ORDER BY (EventDate, UserID)
TTL 
  -- Delete rows after 2 years
  EventDate + INTERVAL 2 YEAR,
  -- Clear detailed session data after 3 months
  EventDate + INTERVAL 3 MONTH 
    TO DISK 'cold',
  -- Remove UserAgent after 6 months
  EventDate + INTERVAL 6 MONTH 
    DELETE UserAgent, FullSessionData;
    

Table with Multiple TTL Rules

-- Add TTL to move old partitions to cold storage
ALTER TABLE web_events
  MODIFY TTL EventDate + INTERVAL 1 YEAR
  TO VOLUME 'cold_volume';

-- Add column-level TTL to clear detailed data
ALTER TABLE web_events
  MODIFY COLUMN FullSessionData
  TTL EventDate + INTERVAL 3 MONTH;
    

Altering Existing Table to Add TTL

TTL rules are evaluated during merges, so you may need to 
trigger a merge manually using OPTIMIZE TABLE if you 
want the rules to apply immediately.

TTL expressions provide a powerful, automated approach to managing data lifecycle in ClickHouse. They allow you to 
implement sophisticated data retention and storage tiering policies without manual intervention.



Materialized Columns

What Are Materialized 
Columns?
Materialized columns store pre-
computed values derived from 
other columns. They are calculated 
once during insertion rather than 
each time a query runs.

Store complex expression 
results

Computed and stored on data 
insertion

Trade storage for query 
performance

CREATE TABLE web_events (
  EventTime DateTime,
  URL String,
  ParsedPath String
    MATERIALIZED 
extractURLPathAndQuery(UR
L)
) ENGINE = MergeTree()
ORDER BY (EventTime);
    

Implementation

The ParsedPath column is 
automatically populated by 
applying the 
extractURLPathAndQuery function 
to the URL column during 
insertion.

Best Use Cases
Ideal for:

Frequently used complex 
calculations

Parsing or extraction 
operations

When the derived value is 
smaller than the original data

Materialized columns significantly improve query performance for commonly used expressions by trading increased storage 
space for reduced computation time. They're especially valuable for complex parsing or transformation operations that would 
otherwise be repeated in multiple queries.



Avoiding Common Pitfalls

Avoid SELECT *
Always specify only the columns you need to reduce 
I/O and memory usage. This is especially important in 
a columnar database like ClickHouse.

Beware Functions on Indexed Columns
Applying functions to indexed columns prevents index 
usage. Restructure queries to apply functions to 
constants instead.

Monitor Disk I/O
ClickHouse is often I/O bound. Ensure your storage 
system provides sufficient throughput for your 
workload.

Use Proper ORDER BY in Queries
Without an ORDER BY clause, results may arrive in 
unpredictable order, requiring additional sorting. 
Specify ordering when needed.

Avoiding these common pitfalls can help prevent unexpected performance issues in your ClickHouse deployment. Many 
performance problems stem from query patterns that don't align well with ClickHouse's architecture and optimization 
strategies.



Monitoring Query Performance
Query Log Tables
ClickHouse 
maintains detailed 
query logs in 
system.query_log 
containing execution 
time, read rows, 
memory usage, and 
more. Use these logs 
to identify slow or 
resource-intensive 
queries.

Processes Tables
The 
system.processes 
table shows 
currently running 
queries, allowing 
you to monitor long-
running operations 
and potentially kill 
problematic queries.

Metrics Tables
System tables like 
system.metrics and 
system.asynchronou
s_metrics provide 
comprehensive 
performance 
indicators about 
your ClickHouse 
instance.

Events Tables
The system.events 
table tracks various 
events and counters, 
helping you 
understand system 
behavior and 
identify potential 
bottlenecks.

ClickHouse provides rich introspection capabilities through its system tables. Regular monitoring of these tables can help you 
identify performance issues early and understand the resource usage patterns of your queries.



Analyzing Slow Queries

SELECT
  query_duration_ms,
  query,
  read_rows,
  read_bytes,
  memory_usage
FROM system.query_log
WHERE type = 'QueryFinish'
  AND query_duration_ms > 1000
  AND event_date = today()
ORDER BY query_duration_ms DESC
LIMIT 10;
    

Finding Slow Queries

This query identifies the ten slowest queries from today 
that took more than 1 second to execute, showing their 
duration, the number of rows read, bytes processed, and 
memory usage.

Key Metrics to Analyze

read_rows: High values indicate insufficient data 
skipping

read_bytes: Amount of data read from disk

memory_usage: Peak memory usage during execution

result_rows: Number of rows in the result set

query_duration_ms: Total execution time

Look for queries reading many more rows than they return, 
as these are prime candidates for optimization through 
better indexing or query restructuring.

Regular analysis of slow queries is essential for maintaining optimal performance in ClickHouse. By understanding which 
queries consume the most resources and why, you can focus your optimization efforts on the areas that will provide the 
greatest benefits.



Using EXPLAIN for Query Analysis

1
EXPLAIN Syntax Formats

ClickHouse offers multiple EXPLAIN 
formats for different levels of detail

2
Query Pipeline Analysis

Understand how data flows through 
processing steps

3
Optimization Decision Review

See which indexes and optimizations 
are being applied

The EXPLAIN command is a powerful tool for understanding how ClickHouse executes your queries. It helps you identify 
potential optimization opportunities by showing which indexes are being used, how tables are being read, and how data flows 
through the query pipeline.

-- Basic syntax examples:
EXPLAIN syntax SELECT ... FROM ...;
EXPLAIN pipeline SELECT ... FROM ...;
EXPLAIN indexes SELECT ... FROM ...;
EXPLAIN SETTINGS analyze_expressions=1 SELECT ... FROM ...;

Understanding the query execution plan is crucial for diagnosing performance issues and validating that your optimization 
techniques (like indexing and filtering) are working as expected.



EXPLAIN Pipeline Example

EXPLAIN pipeline
SELECT 
  EventDate,
  COUNT(*) AS hits,
  uniq(UserID) AS visitors
FROM web_events
WHERE 
  EventDate BETWEEN 
    '2023-01-01' AND '2023-01-31'
  AND URL LIKE '%checkout%'
GROUP BY EventDate
ORDER BY EventDate;
    

Query Example Understanding the Output

The pipeline output shows:

Reading from MergeTree with filters1.

Data filtration steps2.

Aggregation operations3.

Sorting of results4.

Result formation5.

Look for full table scans, excessive reads, or missing index 
usage as indicators of potential optimization opportunities.

The EXPLAIN pipeline command provides a detailed view of how data flows through the query execution pipeline. It can help 
you understand where time is being spent during query execution and identify bottlenecks such as excessive data reads or 
inefficient operations that might benefit from additional indexing or query restructuring.



EXPLAIN Indexes Example

EXPLAIN indexes
SELECT COUNT(*)
FROM web_events
WHERE 
  EventDate = '2023-01-15'
  AND RegionID = 42
  AND URL LIKE '%checkout%';
    

Query Example Understanding the Output

The indexes output shows:

Which primary key columns are used for filtering1.

How conditions are applied to the index2.

Which secondary indexes might be engaged3.

The estimated data read reduction from indexing4.

Pay attention to conditions marked as "NONE" (not using 
an index) as these may be candidates for additional 
indexing or query restructuring.

The EXPLAIN indexes command specifically focuses on how ClickHouse uses indexes to optimize data access for your query. 
It helps you confirm that your primary key design and secondary indexes are effectively reducing the amount of data that 
needs to be read for query execution.



Query Profiling with EXPLAIN analyze

EXPLAIN analyze
SELECT ...
FROM ...
WHERE ...
    

EXPLAIN analyze Syntax

The analyze format provides 
detailed profiling information about 
query execution, including time 
spent in each execution stage.

Interpreting Results
Key metrics in the output:

Execution time for each stage

Rows processed at each step

Memory usage during 
execution

CPU and real time for 
operations

Optimization Opportunities
Look for:

Steps with disproportionate 
execution time

Excessive row processing 
before filtering

High memory usage operations

Unexpected data volume in 
intermediate steps

The analyze mode provides the most detailed profiling information about query execution, making it invaluable for 
pinpointing performance bottlenecks in complex queries. Use it when you need to understand exactly where time is being 
spent during query execution and which operations might benefit from optimization.



Memory Usage Optimization
Common Memory Issues

ClickHouse operations that often consume significant 
memory:

GROUP BY on high-cardinality columns

DISTINCT operations on large datasets

ORDER BY without a LIMIT clause

Large JOIN operations

Complex analytical functions

Mitigation Strategies

Techniques to reduce memory consumption:

Use approximate aggregation functions (e.g., uniqHLL12 
instead of uniq)

Apply LIMIT clauses when ordering

Leverage external sorting with 
max_bytes_before_external_sort

Enable partial aggregation with 
partial_aggregation_memory_efficient=1

Filter data before joins or aggregations

Memory optimization is crucial for ClickHouse performance, especially when dealing with large datasets. By understanding 
which operations consume memory and applying appropriate settings and query patterns, you can avoid out-of-memory 
errors and keep your system running efficiently even under heavy load.



Data Type Optimization

Use Specific Numeric Types
Choose the narrowest numeric type that can 
accommodate your data range (UInt8/16/32/64, 
Int8/16/32/64) to improve compression and 
performance

Date vs. DateTime
Use Date for dates without time components to save 
storage and improve filtering performance, as Date 
consumes 2 bytes vs 4 bytes for DateTime

String Alternatives
Consider FixedString for fixed-length strings, Enum 
for limited sets of string values, and LowCardinality 
for columns with many repeated values

LowCardinality Decorator
Apply LowCardinality to columns with fewer than 
10,000 unique values to dramatically improve query 
performance and compression

Choosing appropriate data types is a low-effort, high-impact optimization that improves both storage efficiency and query 
performance. ClickHouse offers specialized types that can provide significant benefits when matched correctly to your data 
characteristics.



LowCardinality Data Type

10x
Query Performance

Potential speedup for operations on 
columns with repeated values

2-10x
Compression Ratio

Improved storage efficiency compared 
to regular String types

<10K
Ideal Distinct Values

Optimal number of unique values for 
maximum benefit

The LowCardinality data type is a special decorator in ClickHouse that implements dictionary encoding for string and 
numeric columns with a limited number of distinct values. It stores unique values in a dictionary and references them with 
small integers, dramatically reducing storage requirements and improving query performance.

-- Example implementation
CREATE TABLE web_events (
  EventDate Date,
  URL String,
  Browser LowCardinality(String),
  OS LowCardinality(String),
  RegionName LowCardinality(String)
) ENGINE = MergeTree()
ORDER BY (EventDate, URL);

For columns like browser names, operating systems, country names, or status codes, LowCardinality can provide dramatic 
performance improvements with minimal implementation effort.



Compression Strategies
Codec Selection
ClickHouse offers 
multiple 
compression codecs: 
LZ4 (default), ZSTD, 
Delta, Gorilla, 
DoubleDelta, and 
more. Each codec 
performs differently 
depending on data 
characteristics.

Column-Level 
Settings
Compression can be 
configured at the 
column level, 
allowing you to 
optimize each 
column based on its 
data pattern. This 
granular approach 
maximizes overall 
compression 
efficiency.

Codec 
Combinations
Codecs can be 
combined in 
sequence for better 
results. For example, 
Delta encoding 
followed by ZSTD 
often works well for 
numeric time series 
data with small 
changes.

Performance 
Trade-offs
Higher compression 
ratios typically come 
with increased CPU 
usage. Balance 
storage savings 
against processing 
overhead based on 
your workload 
characteristics.

Effective compression strategy can significantly reduce storage requirements and improve I/O performance by reducing the 
amount of data that needs to be read from disk. ClickHouse's columnar storage makes it particularly amenable to high 
compression ratios since similar values are stored together.



Compression Implementation Examples

CREATE TABLE sensor_readings (
  sensor_id UInt32,
  timestamp DateTime,
  
  -- For sequential integers with small
  -- differences, Delta works well
  measurement_id UInt32 CODEC(Delta, ZSTD),
  
  -- For floating-point time series, 
  -- Gorilla is effective
  temperature Float64 CODEC(Gorilla, ZSTD),
  
  -- For high-compression needs
  humidity Float64 CODEC(ZSTD(3)),
  
  -- For categorical string data
  status LowCardinality(String)
) ENGINE = MergeTree()
ORDER BY (sensor_id, timestamp);
    

Table Creation with Codecs

-- Modify compression for an existing column
ALTER TABLE sensor_readings
MODIFY COLUMN temperature
CODEC(Gorilla, ZSTD);

-- Check compression ratio
SELECT
  column,
  formatReadableSize(data_compressed_bytes) AS 
compressed,
  formatReadableSize(data_uncompressed_bytes) AS 
uncompressed,
  round(data_uncompressed_bytes / 
data_compressed_bytes, 2) AS ratio
FROM system.columns
WHERE table = 'sensor_readings'
ORDER BY ratio DESC;
    

Altering Existing Columns

Choosing the right compression codec for each column based on its data characteristics can significantly improve both 
storage efficiency and query performance. Monitor compression ratios and query performance to find the optimal balance for 
your specific workload.



ClickHouse Insert Performance

Insert in Batches
ClickHouse performs best 
with larger batch inserts 
typically between 1,000 and 
1,000,000 rows, which 
amortize overhead across 
more rows

Use INSERT ... SELECT
For data transformations, 
perform them during 
insertion rather than as 
separate steps to reduce 
overhead and improve 
performance

Buffer Tables
Consider Buffer table engine 
for accumulating small 
inserts before writing to the 
main table, improving insert 
throughput for frequent 
small operations

Async Inserts
Enable async_insert=1 and 
wait_for_async_insert=0 for 
non-blocking inserts that 
improve throughput for 
high-frequency insert 
workloads

ClickHouse is optimized for analytical workloads, which typically involve bulk data loading followed by complex queries. Its 
insert performance can be excellent when following these best practices, but it's important to align your data ingestion 
patterns with ClickHouse's strengths.



Buffer Tables for Insert Optimization
How Buffer Tables Work

Buffer tables temporarily store inserted data in memory 
and periodically flush it to the target table in larger 
batches. This approach dramatically improves performance 
for frequent small inserts.

Key characteristics:

In-memory data accumulation

Configurable flush conditions

Automatic batch formation

Transparent queries across buffer and target

CREATE TABLE events_buffer AS events
ENGINE = Buffer(default, events, 16, 10, 100, 10000, 
1000000, 10000000, 100000000);

-- Insert directly to buffer table
INSERT INTO events_buffer VALUES (...);

-- Queries automatically combine data from buffer
-- and main table
SELECT COUNT(*) FROM events_buffer
WHERE EventDate = today();
    

Implementation Example

The buffer parameters control the number of shards and 
various thresholds for flushing based on time, rows, and 
bytes.

Buffer tables provide an excellent solution for scenarios requiring frequent small inserts while maintaining the analytical 
query performance benefits of ClickHouse. They're particularly valuable for real-time data ingestion pipelines that need to 
handle many small batches of incoming data.



Distributed Table Design

When scaling ClickHouse across multiple servers, proper distributed table design is essential for performance and reliability. 
ClickHouse uses a shared-nothing architecture where each shard operates independently but can be queried together 
through distributed tables.

The key to effective distributed performance is choosing an appropriate sharding key that distributes data evenly while 
allowing most queries to target a minimal number of shards. Distributing by date is common for time-series data but can lead 
to hotspots on recent dates.

Sharding Strategy
Distribute data across shards based 
on access patterns and data locality

Replication Design
Ensure data reliability with 
appropriate replication factor

Distributed Tables
Create abstraction layer for 
transparent querying across shards

Load Balancing
Configure for even workload 

distribution across cluster nodes



Distributed Table Implementation
Configuration Steps

Define cluster in config.xml1.

Create local tables on each shard2.

Create distributed table as virtual view3.

Insert data through distributed table4.

The distributed table acts as a view across all shards, 
automatically routing queries and inserts to the appropriate 
servers based on the sharding scheme.

-- On each shard, create local table
CREATE TABLE events_local ON CLUSTER 
'cluster_name' (
  EventDate Date,
  UserID UInt64,
  EventType String
) ENGINE = MergeTree()
PARTITION BY toYYYYMM(EventDate)
ORDER BY (EventDate, UserID);

-- Create distributed table
CREATE TABLE events_distributed ON CLUSTER 
'cluster_name' (
  EventDate Date,
  UserID UInt64,
  EventType String
) ENGINE = Distributed(
  cluster_name,
  default,
  events_local,
  cityHash64(UserID)
);

-- Insert through distributed table
INSERT INTO events_distributed VALUES (...);
    

Implementation Example

The Distributed engine provides a transparent interface for working with sharded data. It automatically routes queries to the 
appropriate shards and merges results, while distributing inserted data according to the specified sharding key function.



Aggregation Performance Optimization

Aggregate Function Data 
Types
Store pre-aggregated states using 
AggregateFunction data type to 
efficiently update aggregations 
incrementally without reprocessing 
all data.

Enables incremental 
aggregation

Significantly reduces 
computation for frequent 
updates

Works with most aggregate 
functions

Approximate Aggregation
Use approximation functions for 
high-cardinality aggregations with 
large data volumes.

uniqHLL12() instead of uniq()

quantileTDigest() instead of 
quantile()

Trades small accuracy for major 
performance gains

Materialized Views for Pre-
Aggregation
Create materialized views that pre-
compute common aggregations for 
faster query responses.

Automatically updated on data 
insertion

Dramatically speeds up 
repeated aggregation queries

Perfect for dashboards and 
recurring reports

Aggregation queries can be particularly resource-intensive, especially with large datasets. These optimization techniques can 
significantly improve performance for analytical workloads that rely heavily on aggregation operations.



AggregateFunction Implementation

-- Create materialized view with aggregate states
CREATE MATERIALIZED VIEW events_hourly_stats
ENGINE = AggregatingMergeTree()
PARTITION BY toYYYYMM(hour)
ORDER BY (hour, event_type)
AS SELECT
  toStartOfHour(EventTime) AS hour,
  EventType AS event_type,
  countState() AS events,
  uniqState(UserID) AS users
FROM events
GROUP BY hour, event_type;

-- Query using -Merge functions to finalize
SELECT
  hour,
  event_type,
  countMerge(events) AS event_count,
  uniqMerge(users) AS user_count
FROM events_hourly_stats
WHERE hour >= yesterday()
GROUP BY hour, event_type
ORDER BY hour;
    

Materialized View with AggregateFunction Benefits of This Approach

This implementation provides significant advantages:

Pre-computed aggregation states dramatically speed 
up queries

Incremental updates avoid full recalculation when new 
data arrives

Storage is much more efficient than storing final 
aggregation results

Supports re-aggregation at query time with different 
grouping

The AggregatingMergeTree engine automatically merges 
states for the same keys during background merges, 
keeping the aggregation states up-to-date and efficient.

AggregateFunction data types and the AggregatingMergeTree engine provide a powerful solution for scenarios requiring both 
frequent data ingestion and fast aggregation queries, such as real-time analytics dashboards.



Materializing Complex Calculations

Materialized Views
Automatic transformation and aggregation

2
Materialized Columns
Pre-computed expressions stored with data

Query Caching
Session-level caching for repeated queries

When working with complex calculations or transformations that are frequently used in queries, materializing the results can 
significantly improve performance. ClickHouse offers several approaches, each with different trade-offs in terms of storage, 
update complexity, and query flexibility.

Materialized views automatically transform and potentially aggregate data as it's inserted, creating derived tables optimized 
for specific query patterns. Materialized columns pre-compute expressions at the row level during insertion. Query caching 
provides temporary performance improvements for repeated identical queries within the same session.



Schema Evolution and Maintenance

Adding New Columns
ClickHouse makes adding columns very efficient, as 
they're stored separately on disk. New columns can 
be added with default values without rewriting 
existing data.

Managing Table Merges
Background merges can impact query performance. 
Schedule major operations during off-peak hours and 
monitor merge progress through system tables.

Data Mutations
UPDATE and DELETE operations are implemented as 
mutations that rewrite data parts asynchronously. 
Monitor and manage these operations carefully.

Partition Management
Use DETACH, ATTACH, DROP, and REPLACE 
PARTITION commands for efficient data lifecycle 
management, particularly for time-series data.

ClickHouse is designed primarily for append-only analytical workloads, but it does provide mechanisms for schema evolution 
and data maintenance. Understanding these operations' performance implications and monitoring their progress is essential 
for maintaining optimal performance during maintenance activities.



Replication and High Availability

ReplicatedMergeTree 
Engine
Built-in replication 
mechanism that ensures 
data consistency across 
multiple servers. Provides 
automatic failover and 
recovery capabilities while 
maintaining the 
performance advantages of 
MergeTree.

Synchronization 
Mechanism
Uses ZooKeeper to 
coordinate insert operations 
and metadata changes 
across replicas. Provides the 
option for synchronous or 
asynchronous inserts 
depending on durability 
requirements.

Monitoring Replication
System tables provide 
detailed visibility into 
replication status, including 
lag, queue size, and 
potential problems. Regular 
monitoring is essential for 
ensuring system health.

Load Balancing
Distribute read queries 
across replicas to improve 
throughput and reduce load 
on individual servers. Write 
operations can be directed 
to any replica with 
synchronization handled 
automatically.

ClickHouse replication is designed to provide high availability while maintaining excellent query performance. It handles the 
challenges of distributed consistency without significant overhead, making it suitable for demanding analytical workloads 
that require both performance and reliability.



Replication Implementation

CREATE TABLE events_replicated (
  EventDate Date,
  EventTime DateTime,
  UserID UInt64,
  EventType String
) ENGINE = ReplicatedMergeTree(
  '/clickhouse/tables/{shard}/events',
  '{replica}'
)
PARTITION BY toYYYYMM(EventDate)
ORDER BY (EventDate, UserID);
    

Replicated Table Creation

The two string parameters specify the ZooKeeper path for 
table metadata and the replica identifier. These ensure 
proper coordination across all replica servers.

-- Check for replication delays
SELECT
  database,
  table,
  is_leader,
  total_replicas,
  active_replicas,
  future_parts,
  parts_to_check,
  queue_size,
  inserts_in_queue,
  merges_in_queue
FROM system.replicas
WHERE active_replicas < total_replicas
  OR queue_size > 20
ORDER BY queue_size DESC;
    

Monitoring Replication Status

Regular monitoring of replication metrics helps identify 
potential issues before they impact system availability or 
performance.

ClickHouse replication is a robust solution for ensuring data availability and durability across multiple servers. The 
ReplicatedMergeTree engine handles all aspects of keeping data synchronized, allowing you to focus on your analytical 
workloads rather than complex replication management.



Key Takeaways: Optimizing ClickHouse Performance

1Leverage ClickHouse Architecture
Design with column-oriented storage and sparse 

indexing in mind
Optimize Primary Key Design
Order columns by cardinality and match query 
patternsWrite Efficient Queries

Filter early, select only required columns, and 
optimize JOINs Implement Secondary Indexes

Use specialized indexes for non-primary key 
columnsMonitor and Analyze

Continuously monitor performance and use 
EXPLAIN to optimize queries

Optimizing ClickHouse performance requires understanding its unique architecture and applying specific design principles. 
By following these best practices for schema design, indexing strategy, and query patterns, you can achieve exceptional 
performance for your analytical workloads.

Remember that optimization is an ongoing process. Continuously monitor your system's performance, analyze query 
patterns, and refine your approach as your data volume and query requirements evolve.


