
Data Security and Data
Masking in ClickHouse
Welcome to this comprehensive guide on implementing robust data
security and effective data masking techniques in ClickHouse.
Throughout this presentation, we'll explore the wide range of security
features available in ClickHouse that help organizations protect sensitive
information while maintaining database performance and functionality.

We'll cover everything from basic access controls to advanced
encryption methods, providing practical implementation guidance for
database administrators and data engineers. Let's dive into the world of
data protection in ClickHouse!

by Shiv Iyer

Agenda: Data Security & Masking Overview
Access Control & Authentication
User management, RBAC, and authentication methods

Data Masking Techniques
SQL functions, custom UDFs, and view-based masking

Encryption Options
Disk-level, column-level, and in-transit encryption

Advanced Implementations
Complex solutions using materialized views and policies

Why Data Security Matters
in ClickHouse

Regulatory
Compliance
Meet GDPR, HIPAA, PCI DSS,
and other regulatory
requirements through proper
data protection measures.

Breach Prevention
Protect against unauthorized
access and potential data leaks
that could damage reputation
and finances.

Data Governance
Maintain control over who can access what data, ensuring proper
data stewardship throughout your organization.

User Management
Fundamentals

Creating Users with
Specific Privileges
Define granular access
permissions to limit data
exposure based on job
requirements.

Role-Based Access
Control (RBAC)
Group common
permissions into roles to
simplify administration and
ensure consistency.

Row-Level Security Policies
Implement data filtering at the row level to show only appropriate
data to specific users.

Creating Users with Specific Privileges

CREATE USER analyst
IDENTIFIED WITH sha256_password
BY 'strong_password'
SETTINGS max_memory_usage = 10000000000;

GRANT SELECT ON database.table TO analyst;
GRANT SELECT(id, name) ON database.sensitive_table TO
analyst;

SQL Commands Best Practices

Follow the principle of least privilege

Regularly audit user privileges

Implement password policies

Remove unused accounts promptly

Document access grants for compliance

Role-Based Access Control
Implementation

Create Roles
Define roles that represent job functions or responsibilities within
your organization.

Assign Privileges
Grant specific database permissions to each role based on
access requirements.

Assign Users to Roles
Link users to appropriate roles instead of managing individual
permissions.

Review & Update
Regularly audit role assignments and adjust as
organizational needs change.

RBAC SQL Examples

-- Create roles
CREATE ROLE analyst_role;
CREATE ROLE admin_role;

-- Grant permissions to roles
GRANT SELECT ON analytics.* TO analyst_role;
GRANT ALL ON *.* TO admin_role;

-- Assign roles to users
GRANT analyst_role TO user1;
GRANT admin_role TO admin_user;

Creating and Assigning Roles

-- Create nested roles
CREATE ROLE junior_analyst;
CREATE ROLE senior_analyst;

-- Set up hierarchy
GRANT SELECT ON analytics.public_*
TO junior_analyst;

GRANT junior_analyst TO senior_analyst;
GRANT SELECT ON analytics.sensitive_*
TO senior_analyst;

Using Role Hierarchies

Row-Level Security Policies

1
Granular Data Access
Filter data at the row level based on user context

2
Unified Data Model
Maintain a single table while controlling visibility

3
Transparent Security
Seamless to end users and applications

Implementing Row-Level Security

-- Create row policy for regional access
CREATE ROW POLICY regional_access
ON sales.orders
FOR SELECT
USING region_id = currentRegion();

-- Policy for different roles
CREATE ROW POLICY manager_access
ON employees
FOR SELECT
USING (
 hasRole('manager') AND
 department_id = currentDepartmentId()
) OR hasRole('admin');

Example Policy Definition Key Considerations

Define policies based on business rules

Use user context variables or functions

Combine multiple conditions for complex access
patterns

Test thoroughly to avoid unintended access restrictions

Document policies for compliance audits

Authentication Methods in ClickHouse

3

Password Authentication
Basic method using SHA-256

password hashing for user
verification

SSL Certificates
Certificate-based authentication for
stronger security without password
transmission

LDAP Integration
Centralized authentication using
enterprise directory services

External Authentication
Support for Kerberos and custom

authentication plugins

Setting Up Password Authentication

 sha256_password
 *

Server Configuration

-- Plain password (less secure)
CREATE USER user1 IDENTIFIED WITH plaintext_password
BY 'password123';

-- SHA-256 hashed password (more secure)
CREATE USER user2 IDENTIFIED WITH sha256_password
BY 'securePassword!';

-- Double SHA-1 (legacy)
CREATE USER user3 IDENTIFIED WITH
double_sha1_password BY 'anotherPassword';

Creating Users with Passwords

SSL Certificate
Authentication

Generate Certificates
Create SSL certificates for your ClickHouse server and clients using
a trusted Certificate Authority.

Configure Server
Set up the server to require and validate client certificates for
authentication.

Distribute Client Certs
Securely provide certificates to authorized clients that need to
connect to ClickHouse.

Configure Clients
Set up clients to present their certificates when
connecting to the ClickHouse server.

LDAP Integration
Benefits

Centralized user management

Simplified authentication

Integration with enterprise systems

Enforcement of password policies

Reduced administrative overhead

 ldap.example.com
 636
 uid={user_name},ou=users,dc=example,dc=com
 300
 true
 tls1.2
 demand

Configuration

Introduction to Data Masking
Definition
Data masking is the process of
hiding original data with modified
content while preserving the data
format and usability for non-
sensitive purposes.

Purpose
Protect sensitive information while
allowing access to data structure for
development, testing, or analysis
without exposing protected
information.

Common Use Cases
Customer data protection, PII
compliance, test environment
security, and limited data sharing
with third parties or contractors.

Data Masking Approaches
in ClickHouse

Built-in SQL Functions
Use ClickHouse's native functions like maskPhone() and
maskEmail() for standard masking operations

Custom User-Defined Functions
Create specialized masking logic with UDFs for unique
requirements

View-Based Masking
Implement column-level security using views with
embedded masking logic

4 Advanced Solutions
Combine materialized views and access policies for
comprehensive masking systems

Using Built-in SQL Functions for Masking
Available Functions

maskPhone() - Masks phone numbers

maskEmail() - Masks email addresses

maskCardNumber() - Masks credit card numbers

maskData() - General purpose masking

SELECT
 id,
 name,
 maskPhone(phone_number) AS masked_phone,
 maskEmail(email) AS masked_email,
 maskCardNumber(credit_card) AS masked_cc
FROM customers;

-- Results:
-- 1, John Doe, +1-XXX-XXX-3456, j***@example.com,
XXXX-XXXX-XXXX-1234

Implementation Example

Masking Function Behavior
Function Input Output Description

maskPhone() +1-123-456-
7890

+1-XXX-XXX-
7890

Keeps
country
code and
last 4 digits

maskEmail() john.doe@e
xample.com

j***@exampl
e.com

Keeps first
letter and
domain

maskCardNum
ber()

1234-5678-
9012-3456

XXXX-XXXX-
XXXX-3456

Keeps only
last 4 digits

maskData() Secret123 XXXXXXX123 Configurable
masking
behavior

Creating Custom Masking UDFs

CREATE FUNCTION maskCustomData AS
 (input, showChars) ->
 if(
 length(input) <= showChars,
 input,
 substring(input, 1, showChars) ||
 replaceRegexpAll(
 substring(input, showChars + 1),
 '.',
 '*'
)
);

Custom Function Definition

-- Show first 2 characters
SELECT
 maskCustomData('12345678', 2) AS result;
-- Returns: 12******

-- Show first 4 characters
SELECT
 maskCustomData('ABCDEFGH', 4) AS result;
-- Returns: ABCD****

-- Varying amounts of visible data
SELECT
 maskCustomData(full_name, 1) AS name,
 maskCustomData(ssn, 0) AS ssn,
 maskCustomData(phone, 6) AS phone
FROM customer_data;

Function Usage

Column-Level Security with Views

Create Base Tables
Store complete data in base tables with restricted access

2
Define Masked Views
Create views that apply masking functions to sensitive columns

Grant Access to Views
Allow appropriate roles to query masked views instead of
base tables

Implementing View-Based Masking

-- Create masked view of customer data
CREATE VIEW masked_customers AS
SELECT
 id,
 name,
 maskCustomData(ssn, 0) AS ssn,
 maskCustomData(phone, 3) AS phone,
 city,
 state
FROM customers;

-- Grant access to analysts
GRANT SELECT ON masked_customers
TO analyst_role;

-- Revoke direct table access
REVOKE SELECT ON customers
FROM analyst_role;

View Definition Benefits

Granular column-level protection

Simplified access control

Consistent application of masking rules

Centralized management of masking logic

Transparent to end users and applications

Encryption Options Overview
Disk-Level Encryption
Protect data at rest by encrypting the entire storage layer, securing all database files when the system is offline.

Column Encryption
Selectively encrypt sensitive columns within tables, maintaining granular protection even during database operation.

Data in Transit
Secure information as it travels between clients and servers or between cluster nodes using encryption protocols.

Disk-Level Encryption
Options

OS-level encryption: Linux dm-crypt, LUKS

Filesystem encryption: EncFS, eCryptfs

Hardware encryption: Self-encrypting drives

ClickHouse native encryption: Built-in encryption
features

 /path/to/encrypted/storage/
 /path/to/key.file

 encrypted

Configuration Example

Column Encryption

1 Generate and Secure Encryption Keys
Create strong encryption keys and implement a secure key
management system.

2 Choose Columns to Encrypt
Identify sensitive columns that require encryption while
considering performance impact.

Implement Encryption Functions
Use built-in encrypt/decrypt functions or create custom
encryption UDFs.

4 Control Access to Decryption
Limit decryption capabilities to authorized users with appropriate
permissions.

Column Encryption Implementation

-- Create function for encryption
CREATE FUNCTION encryptAES256 AS
 (data, key) -> encrypt('aes-256-cbc',
 data,
 key);

-- Create function for decryption
CREATE FUNCTION decryptAES256 AS
 (data, key) -> decrypt('aes-256-cbc',
 data,
 key);

-- Secure key retrieval function
CREATE FUNCTION getSecureKey AS
 () -> extractFromConfig('encryption_keys.user_data');

Encryption Logic

-- Insert with encryption
INSERT INTO sensitive_data
SELECT
 id,
 name,
 encryptAES256(social_security_number,
 getSecureKey()) AS encrypted_ssn
FROM source_data;

-- Query with decryption
SELECT
 id,
 name,
 decryptAES256(encrypted_ssn,
 getSecureKey()) AS ssn
FROM sensitive_data
WHERE id = 123;

Usage in Table Operations

Securing Data in Transit

443
Default SSL Port

Standard secure port for
ClickHouse HTTPS connections

9440
Secure Native Protocol

Default port for encrypted native
protocol

256
Bit Encryption

Recommended SSL encryption
strength

SSL/TLS Configuration

8443

 /path/to/server.crt
 /path/to/server.key
 /path/to/ca.crt
 strict
 true
 true
 sslv2,sslv3,tlsv1
 true

Server Configuration

clickhouse-client \
 --secure \
 --host=example.com \
 --port=8443 \
 --ssl_cert_file=/path/to/client.crt \
 --ssl_key_file=/path/to/client.key \
 --ssl_ca_file=/path/to/ca.crt

jdbc:clickhouse://example.com:8443/default?
ssl=true&sslmode=strict&sslrootcert=/path/to/ca.crt

Client Configuration

Secure Internode
Communication

Generate Node Certificates
Create individual certificates for each node in your ClickHouse
cluster.

Configure Interserver Encryption
Set up encryption parameters for communication between
cluster nodes.

Verify Certificate Trust
Ensure all nodes properly verify certificates from other nodes.

Test Secure Communication
Validate that nodes can securely communicate using
encrypted channels.

Internode Encryption Configuration

9010

 interserver
 password

Configuration Settings

 node1.example.com
 9010
 1

 node2.example.com
 9010
 1

Cluster Definition

Advanced Data Masking Implementation

Role-Based Masking
Dynamic masking based on user role

2
Row Policy Filters
Combine with row-level security

Materialized Views
Pre-computed masked data

Creating Row Policies for Different User Roles

-- Create policy for different user roles
CREATE ROW POLICY sensitive_data
ON customers
FOR SELECT USING (
 -- Regular users see only their data
 hasRole('regular_user')
 AND (showCustomerData = 0)
 OR
 -- Admins see everything
 hasRole('admin')
);

Policy Definition Usage Considerations

Combine multiple conditions for complex access
patterns

Use context variables to dynamically filter data

Create separate policies for different operations (SELECT,
INSERT, etc.)

Test thoroughly to avoid unintended restrictions

Document policies for auditing and compliance

Materialized Views with Conditional Masking

-- Create materialized view with conditional masking
CREATE MATERIALIZED VIEW customer_data_secure
ENGINE = MergeTree()
ORDER BY id
AS SELECT
 id,
 -- Conditional name masking
 if(hasRole('admin') OR showCustomerData = 1,
 full_name,
 concat(substring(full_name, 1, 1), '***')
) AS name,
 -- Conditional email masking
 if(hasRole('admin') OR showCustomerData = 1,
 email,
 maskEmail(email)
) AS email,
 -- Conditional phone masking
 if(hasRole('admin') OR showCustomerData = 1,
 phone,
 maskPhone(phone)
) AS phone
FROM customers;

View Definition Benefits

Pre-computed masked data for performance

Role-based conditional masking

Consistent application of masking rules

Reduced query complexity for end users

Centralized definition of masking logic

Dynamic Data Masking
with User Contexts

1
User Authentication
Establish user identity and role

Context Variables
Set session-specific masking controls

3
Conditional Masking
Apply masking based on context

Data Presentation
Show appropriately masked results

Implementing User Context Variables

-- At session start
SET allow_sensitive_data = 1;
SET current_department_id = 42;
SET current_customer_id = 12345;

-- In application code (example)
connection.execute(
 "SET allow_sensitive_data = ?",
 [user.hasPermission("view_sensitive") ? 1 : 0]
);
connection.execute(
 "SET current_department_id = ?",
 [user.departmentId]
);

Setting Context Variables

-- In view definition
CREATE VIEW employee_data AS
SELECT
 id,
 name,
 IF(allow_sensitive_data = 1,
 salary,
 NULL) AS salary,
 department_id,
 IF(allow_sensitive_data = 1 OR
 department_id = current_department_id,
 phone,
 maskPhone(phone)) AS phone
FROM employees
WHERE department_id = current_department_id
 OR allow_sensitive_data = 1;

Using Context in Queries

Masking in Development and Testing
Environments

1
Production Data

Original sensitive information in
secure environment

Data Masking
Apply consistent masking before
data migration

Test Environment
Use masked data for development
and testing

Regular Refresh
Update test data with newly masked

production data

Creating Test Data with INSERT SELECT

-- Copy and mask data to test environment
INSERT INTO test.customers
SELECT
 id,
 maskCustomData(name, 1) AS name,
 maskPhone(phone) AS phone,
 maskEmail(email) AS email,
 replaceAll(address, '.', '*') AS address,
 maskCardNumber(credit_card) AS credit_card,
 region,
 registration_date
FROM prod.customers;

Data Masking During Migration Consistent Masking Approach

When creating test data from production, it's essential to:

Apply consistent masking rules across all sensitive
fields

Preserve data relationships and referential integrity

Maintain data format and validation rules

Document the masking approach for developers

Automate the refresh process with scheduled jobs

Testing Security Implementations

1 Verify Access Controls
Test that users can only access data appropriate for
their roles and permissions.

Validate Masking Rules
Confirm that masking functions properly obscure
sensitive data according to specifications.

Audit Encryption
Verify that encrypted data cannot be accessed without
proper decryption keys.

Attempt Security Bypass
Try to circumvent security measures to identify
potential vulnerabilities.

Security Testing SQL Examples

-- Test as regular user
SET user_name = 'regular_user';

-- Attempt to access restricted table
SELECT * FROM sensitive_data;
-- Should fail or return filtered results

-- Test as admin
SET user_name = 'admin_user';

-- Attempt same query
SELECT * FROM sensitive_data;
-- Should return complete results

-- Test row-level policy
SET current_region_id = 5;
SELECT * FROM regional_data;
-- Should only show region 5 data

Testing Access Controls

-- Test masking functions directly
SELECT
 maskPhone('+1-123-456-7890') AS masked_phone,
 '+1-123-456-7890' AS original_phone;
-- Should show masked version

-- Test conditional masking
SET show_sensitive = 0;
SELECT email FROM customer_view WHERE id = 1;
-- Should show masked email

SET show_sensitive = 1;
SELECT email FROM customer_view WHERE id = 1;
-- Should show original email if authorized

Testing Masking Rules

Auditing Security
Measures

Enable Comprehensive Logging
Configure detailed logging of all data access, especially for
sensitive information.

Regular Security Reviews
Schedule periodic audits of security configurations, permissions,
and access patterns.

Monitor Suspicious Activity
Implement alerts for unusual data access patterns or potential
security violations.

Maintain Compliance Documentation
Keep detailed records of security measures for regulatory
compliance requirements.

Configuring Security Logging

 trace
 /var/log/clickhouse-server/clickhouse-server.log
 /var/log/clickhouse-server/clickhouse-server.err.log
 1000M
 10

 system
 query_log
 toYYYYMM(event_date)
 7500

Log Configuration

-- Find all queries accessing sensitive tables
SELECT
 query_id,
 user,
 query_start_time,
 query
FROM system.query_log
WHERE
 query LIKE '%sensitive_data%'
 AND event_date >= today() - 7
ORDER BY query_start_time DESC;

-- Check failed authentication attempts
SELECT
 event_time,
 user,
 auth_type,
 error_code,
 error_message
FROM system.text_log
WHERE
 event_type = 'AuthenticationFailed'
 AND event_date >= today() - 7;

Querying Audit Logs

Performance Considerations for Security
Features

3

Data Masking
Minimal impact when using

built-in functions; more
complex UDFs may have

higher CPU usage

Encryption
Column encryption adds
significant CPU overhead;
disk encryption primarily

affects I/O operations

Row Policies
May reduce query

performance when filtering
large datasets, especially
with complex conditions

Materialized Views
Initial creation requires

resources, but subsequent
queries benefit from pre-

computed results

Optimizing Security Performance
Indexing
Strategy
Ensure proper
indexes on columns
used in security
filters to minimize
scan operations.

Caching
Mechanisms
Utilize ClickHouse's
caching features to
reduce the overhead
of repeated security
checks.

Resource
Allocation
Allocate sufficient
CPU and memory
resources to handle
additional security
processing.

Data
Partitioning
Structure data
partitions to align
with security
boundaries for more
efficient filtering.

Balancing Security and
Performance

Security Feature Performance
Impact

Optimization
Strategy

Row-Level Security Medium to High Use materialized
views for common
filters

Column Masking Low to Medium Optimize UDFs, use
built-in functions

Column Encryption High Encrypt only
essential columns

Disk Encryption Low (CPU), Medium
(I/O)

Use hardware
acceleration if
available

SSL/TLS Low to Medium Session caching,
connection pooling

Best Practices for Data Security in ClickHouse

Defense in Depth
Implement multiple security layers rather than relying on a single protection mechanism

Principle of Least Privilege
Grant minimum necessary access rights to users and applications

Monitor and Audit
Maintain comprehensive logging and regular security
reviews

Security Implementation Checklist
User Management

Create specific users for each
purpose

Implement role-based access
control

Enforce strong password policies

Regularly audit user accounts

Remove unused accounts
promptly

Data Protection

Identify and classify sensitive data

Apply appropriate masking
techniques

Implement encryption for
sensitive columns

Configure secure data backups

Test security measures regularly

System Security

Enable secure authentication

Configure SSL/TLS for all
connections

Secure internode communications

Keep ClickHouse updated

Monitor system logs for anomalies

Regulatory Compliance and ClickHouse
Security

GDPR Compliance
Implement data minimization, masking, and right-to-be-
forgotten capabilities to meet European privacy
requirements.

HIPAA Requirements
Apply PHI protection through encryption, access
controls, and comprehensive audit logs for healthcare
data.

PCI DSS Standards
Secure payment card information using strong
encryption, masking, and strict access limitations to
meet payment industry requirements.

SOC 2 Auditing
Enable comprehensive logging and security controls to
demonstrate proper system security during compliance
audits.

GDPR-Specific Configuration
Data Protection Features

Right to be forgotten: Implement deletion procedures

Data minimization: Only store necessary fields

Purpose limitation: Use row policies to restrict access

Storage limitation: Configure TTL for data expiration

Processing security: Apply masking and encryption

-- Implement TTL for data expiration
CREATE TABLE gdpr_compliant_data
(
 user_id UInt64,
 name String,
 email String,
 preferences String,
 last_activity Date,
 created_at DateTime
)
ENGINE = MergeTree()
ORDER BY user_id
-- Auto-delete after 2 years of inactivity
TTL last_activity + INTERVAL 2 YEAR;

-- Data deletion procedure
CREATE PROCEDURE forget_user(user_id UInt64)
AS BEGIN
 ALTER TABLE user_data DELETE WHERE user_id =
user_id;
 ALTER TABLE user_preferences DELETE WHERE user_id
= user_id;
 ALTER TABLE user_activity DELETE WHERE user_id =
user_id;
END;

Implementation Example

Real-World Security Implementation
Scenarios

Financial Services
Banks implementing column-level
encryption for account data and
transaction details, with role-based
access for different staff positions.

Healthcare
Medical systems using comprehensive
data masking for PHI in test
environments while maintaining data
utility for development.

E-Commerce
Online retailers applying dynamic
masking for customer profiles based
on service representative roles and
access needs.

Troubleshooting Security Issues
Common Problems

Access denied errors: Users unable to access needed
data due to overly restrictive policies

1.

Performance degradation: Queries running slowly
after implementing security measures

2.

Inconsistent masking: Data appearing masked in
some queries but not in others

3.

Certificate errors: SSL connection failures due to
certificate misconfigurations

4.

Key management issues: Problems with encryption
key access or rotation

5.

Diagnostic Approaches

Check system.query_log for errors and execution details

Verify user grants with SHOW GRANTS FOR user

Inspect role assignments with SHOW CREATE USER

Test security functions directly with simple queries

Review server logs for authentication errors

Use EXPLAIN to analyze query execution with security
predicates

Future Security Enhancements in ClickHouse

The ClickHouse security landscape continues to evolve with upcoming features like enhanced anomaly detection for
identifying suspicious access patterns, improved integration with zero-trust security frameworks, and preparation for post-
quantum cryptography. Watch for advancements in unified security management that will simplify configuration and
monitoring while strengthening protection.

Key Takeaways: Data
Security & Masking in
ClickHouse

1
Defense in Depth

Combine multiple security techniques including access control,
masking, and encryption

2
Performance Balance

Carefully implement security features with performance considerations
in mind

3
Continuous Monitoring

Maintain comprehensive logging and regular security reviews

4
Regulatory Alignment

Configure security measures to meet relevant compliance requirements

