
Optimizing ClickHouse Performance: Insights on Partitioning, Indexing, and System Monitoring 1

Optimizing ClickHouse Performance: Insights on
Partitioning, Indexing, and System Monitoring

ClickHouse architecture and optimization techniques revolve around the use of partitioning, indexing, and the impacts of
merging on system performance. Letʼs break down each aspect to understand better how they contribute to query
performance and system behaviour under load:

Optimization with Date Column
Partitioning by Date Column:

Performance Improvement Partitioning by a date column is a common strategy in ClickHouse that aligns well with
time-series data, which appears to be your use case. It allows ClickHouse to quickly exclude irrelevant partitions from
queries that filter on the date column, reducing the amount of data that needs to be scanned.

TTL Time-To-Live) Management Using the date column in TTL expressions simplifies data management by enabling
automatic cleanup of old data based on the date, thereby maintaining system performance and storage efficiency.

Using Date in WHERE Clause:

Primary Index Utilization If the timestamp column is part of the primary key and queries filter on this, the primary index
helps in quickly locating the relevant data parts. Including the date column in the primary key, if it isn't already, could
further enhance this, especially if this column is used frequently in query filters. This is because ClickHouseʼs primary
index is more efficient when the filtering column is part of the primary key.

Shard Balancing and Distribution
Shard Key Consideration Itʼs good to hear that the data distribution across shards is even, which means that the shard
key is effectively distributing data. However, if performance issues persist, it might be worth revisiting the choice of
shard key, especially if query patterns change or evolve over time.

Count of Records in Different Shards:
You can check the count of records per shard with a query like:

SELECT

 _shard_num,

 count() AS cnt

FROM distributed_table

GROUP BY _shard_num;

Optimizing ClickHouse Performance: Insights on Partitioning, Indexing, and System Monitoring 2

This helps ensure that data is not only distributed evenly by volume but also by the count, which could affect
performance if significantly imbalanced.

Monitoring Merges During Slowdowns
System Load by Merging Monitoring the system.merges and system.part_log tables can give insights into how merge
operations impact system performance. High merge activity can consume significant I/O and CPU resources, which
might explain the system slowdown.

SELECT

 database,

 table,

 count() AS merge_count,

 sum(bytes_compressed) AS total_bytes_merged

FROM system.merges

WHERE is_currently_executing = 1

GROUP BY database, table;

Experimenting with Merge Suspension Stopping the merge process to check for performance improvement is a
significant diagnostic step. The fact that it didnʼt help might indicate that the slowdown isn't solely due to merging. This
could suggest deeper issues possibly related to hardware limitations, other configuration settings, or external factors
not directly related to data management within ClickHouse.

Further Steps
� System Monitoring Beyond merges, consider comprehensive system monitoring that includes tracking CPU, memory,

disk I/O, and network metrics during periods of slowness.

� Query Optimization Analyze the execution plans of slow queries to identify if there are other bottlenecks such as join
operations, suboptimal use of indexes, or inefficient query designs.

� Configuration Review Reassess configurations related to the max_threads , max_memory_usage , and other resource-related
settings in ClickHouse to ensure they are optimized for your workload.

By exploring these areas, you should gain a clearer understanding of how to tackle the performance issues youʼre
experiencing and optimize your ClickHouse implementation for better performance.

